
Carbon Capture & Storage (CCS)

Kacey Ortiz Yicheng Tong Lauren Fontana

Introduction

- Global warming tied to excess carbon dioxide emissions is one of the most severe environmental problems currently.
- Kyoto Protocol for emission reduction
 - Treatment for carbon dioxide emission with economic ramifications
- 3 methods to control emissions
 - 1. Improve of resource use and energy conservation
 - 2. Develop methods to recycle energy
 - 3. Carbon Capture and Storage (CCS)

Carbon Dioxide Emissions Trend

The concentration of CO2 varies in recent 1000 years

What is CCS?

- CCS is the application of various methods to capture carbon dioxide and store it in various ways.
- ► Four main parts to CCS:
 - 1. Separate CO₂ from other waste gasses and concentrate them
 - 2. Transport the CO₂ to storage sites via pipelines or other means of transportation.
 - 3. Store the CO_2 in a location with good sealing properties
 - 4. Monitor the storage site for any leaks or geological issues.

Why is the Development of CCS Important?

- Climate change has recently become a global threat
 - Reducing CO₂ emissions must be a priority of every country
- Improve the energy efficiency, cannot dramatically reduce CO₂ emissions
- Recycling energy through win and solar energy haven't been efficient enough in the U.S., very difficult in other countries.
- If 90% of CO₂ emitted by fossil fuel energy, then the threat of global warming would be reduced drastically.
- Developing a low carbon use economy will take time.

Carbon Capture & Storage-Capture

- Accounts for 80% of the overall CCS process
- Easiest to be done at the source
 - Done directly outside facilities
- 3 methods of capture
 - 1. <u>Post-Combustion</u>
 - Extract CO₂ from flue gas immediately after combustion.
 - ▶ Capacity to capture high amount of CO₂, no requirements or economic incentives currently.
 - 2. <u>Pre-Combustion</u>
 - Air or Steam used to separate CO_2 and H_2 before combustion.
 - Not required under the Clean Air Act, cost not justified
 - 3. Oxy-Fuel Combustion
 - Pure O₂ used to separate CO₂ and H₂
 - Results in waste that's mostly CO₂ and water.
 - Under development due to O_2 needing a temperature of ~3500 °C to combust
 - Extra filtering of boiler exhaust can remove pollutants that can be used to maintain temperature needed for O_2
 - Most current boilers can be retrofitted with oxy-fuel systems

Carbon Capture & Storage-Transport

- Transport of CO₂ involves concentrating and compressing it into a supercritical state, at which is becomes a liquid. Several methods involved.
- Pipelines
 - Main mode of transport
 - Similar to oil and natural gas pipelines
 - Must be constantly monitored for leaks and over pressurization
 - Many factors play a role in the cost:
 - Onshore/offshore
 - Surrounding population
 - Environmental features- mountains/rivers
 - ► Climate
 - ~3600 miles of CO₂ pipelines active
- Other methods available include marine tankers, rail cars and trucks
 - ▶ Not thoroughly explored, shipping costs unknown for large scale

Carbon Capture & Storage-Storage

- Ideally should be stored as quickly as produced.
 - Difficult to accomplish due to various economic issues.
- ► 5 Storage Methods
 - ► 3 Geological methods
 - 1. Depleted oil and gas reserves
 - 2. Deep saline reservoirs
 - 3. Un-mineable coal seams
 - 2 Other Methods
 - 1. Deep ocean sequestration
 - 2. Mineral carbonation

Carbon Capture & Storage-Storage cont.

- In geological formations
 - CO₂ injected into ground at super critical state
 - Depths >800 keep CO₂ in liquid state due to pressure
- Depleted Oil and Gas Reserves
 - CO₂ typically used in Enhanced Oil Recovery (EOR)
 - Removes oil/gas while injecting CO₂
 - Oil/Gas production offsets CO₂ storage costs
 - Current issue is companies use mainly natural CO₂
 - Projects like In Salah (Algeria) and Weyburn Project (Canada) using sites like this
 - Advantage: Storage capacity already there, Oil/Gas extraction tech can be used for injection
 - Disadvantage: Improperly plugged sites can leak, over pressurization can cause fracturing

Carbon Capture & Storage-Storage cont.

Deep Saline Reservoirs

- Contain brine/aqueous solutions that are unfit for human or agricultural use
- ▶ More of these sites, so higher chance of being close to CO₂ sources
- Aqueous solutions can dissolve CO₂ to help keep it from escaping
- Disadvantage: This dissolving can form carbonic acid and erode the storage site, either causing the CO₂ to leak out, or toxic minerals to escape into the surrounding environment

Un-mineable Coal Seams

- Coal mines that cannot be dug out
 - Structural issues or other hazards
- Contain methane which binds to the coal
 - ▶ CO₂ binds to coal tighter
 - Can extract methane for profit while injecting CO₂
- Mines need to have methane
- Many are close to power plants
- Highest storage capacity in the U.S.

Carbon Capture & Storage-Storage cont.

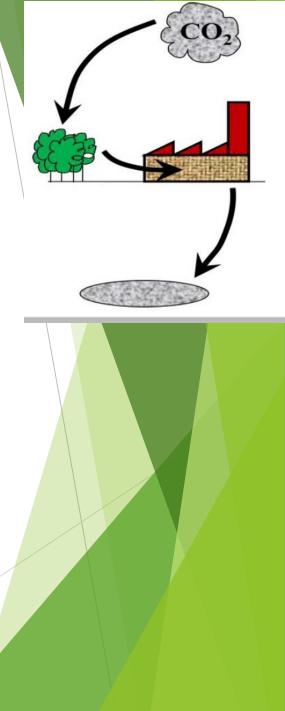
Deep Ocean Sequestration

- Oceans have always acted as a sink for CO₂
- Can store up to 90% of carbon from humans
 - Will take thousands of years
- Oceans natural currents can bring surface CO₂ to bottom of ocean
- Depths <500 m: CO₂ stays gaseous but some can dissolve
- Depths: 500 m < x <3000 m: still gaseous but more likely to dissolve
- Depths:>3000 m: will remain in liquid state, either slowly dissolves or forms underwater pools/lakes
- Could store CO₂ for thousands of year, however causes acidification which can have drastic effects on the ocean environment

Mineral Carbonation

- Reactions high concentrations of CO₂ with minerals
- Forms compounds like calcium carbonate (CO₂)
 - Naturally happens, known as weathering
- Have not yet been tested on large scale
 - Flood basalts could be used

Where Do We Go From Here?


- ▶ The main limiting factor to the growth of CCS is cost and legislation.
 - Transportation, pipe building costs, adding capture methods onto existing facilities, injection process, monitoring the storage etc...
- There is currently no federal law in the United State that inhibits the amount of carbon dioxide companies can inject into the air.
 - European Union has developed a Cap and Trade policy.
- Although 9 out of 10 scientist agree that climate change is real and needs to be addressed the media portrays that the scientific field is split 50:50.
 - Climate of Doubt
- The international Energy Agency estimates that for CCS to have a significant effect in flowing global warming there must be 6000 CCS projects each storing a million tons of CO₂ per year in operation by the year 2050.
 - Still research on going as to how much can a underground reservoir can holds and its potential health risks.
- One limit is that technologies do not deal with the carbon dioxide already in the atmosphere.

Continuing Research

- An easier method for the synthesis of a porous azo-linked polymer (ALP) has been reported in 2014.
 - ▶ The ALP is considered to be a porous organic polymer (POPs).
 - Synthesized by a homocoupling of aniline-like building units in the presence of Copper (I) bromide and pyridine.
 - This POP has high surface areas, physiochemical stability and significant gas storage abilities.
 - ▶ The interaction between CO₂ and the ALP is weak meaning easily rengerated from adsorption to the POP.
 - ▶ High uptake of CO₂ at moderate conditions 273 K and 1 Bar (153-236 mg g⁻¹)
 - This is has a greater capacity then BILPs (12-235 mg g-1) which are seen among the best on the market for CCS.
 - The uptake has been attributed to the high internal molecular free volume, high surface area, and high nitrogen content.
 - > At higher pressures the ALP can adsorb even more.

Carbon Capture and Bioelectricity

- A research has been developing to converge biomass energy with carbon capture and storage technology (BECCS).
- Using the renewable energy (biomass).
 - ▶ The biomass combustion is a neutral process in that the biomass includes carbon entirely from the atmospheric CO₂ (by photosynthesis).
 - ► Leads to negative emissions over time.
 - Bio-energy production includes biomass fuel-power stations, pulp mills and bio-fuel plants.
- Adds another green component to CCS.
 - Problems with using biomass with the processes used in supplying biomass and the potential for decreasing land used for crops.

Conclusions

- There is a real demand for the growing Carbon emissions building up in our atmosphere.
 - While there are efforts to use carbon there is still a need to supply companies with CO₂
- Carbon Capture and Storage is a credible way to slow the effects of global warming and give the world more time to seek out new energy sources.
- Research conducted now is trying to increase the ease from which we capture carbon and hopefully someday capture the carbon already in the atmosphere.
- The End!